
CrowdNotifier Technical Specification
Release v0.1.5

Wouter Lueks (SPRING Lab, EPFL)
Linus Gasser (C4DT, EPFL)

Carmela Troncoso (SPRING Lab, EPFL)

May 18, 2021

CONTENT

1 Introduction 1
1.1 Authors and Contributors . 1
1.2 License . 2

2 Terminology 3

3 Cryptographic Building Blocks 4
3.1 Basic Primitives . 4
3.2 Symmetric-key Encryption . 4
3.3 Public-key Encryption . 4
3.4 Identity-Based Encryption . 5

4 Basic CrowdNotifier 6
4.1 Global Setup . 6
4.2 Setting up a Health Authority . 6
4.3 Setting-up a Location . 6
4.4 Visiting a Location . 8
4.5 Initiating Presence Notification . 11
4.6 Presence Tracing and Notification . 13

5 Managed CrowdNotifier 15
5.1 The Idea . 15
5.2 Organization Setup . 16
5.3 Setting-up a New Location . 16
5.4 Initiating Presence Notification . 17

6 Server-Based CrowdNotifier 18
6.1 Implications of Automatic Triggering . 18
6.2 Overview of Server-Based CrowdNotifier . 19
6.3 Setting up the Backend Server . 19
6.4 Setting-up a Location . 19
6.5 Visiting a Location . 20
6.6 Initiating Presence Notification . 20
6.7 Presence Tracing and Notification . 21
6.8 Security and Privacy Analysis . 22
6.9 Privacy enhancements . 24

7 Identity-based Encryption 25
7.1 Mathematical description . 25
7.2 Implementation of IBE in CrowdNotifier . 26

Bibliography 28

Index 29

i

CHAPTER

ONE

INTRODUCTION

This document provides the technical specification for CrowdNotifier. Its goal is to help imple-
menters implement a presence tracing system based on CrowdNotifier or its variants. This docu-
ment repeats some of the concepts presented in the CrowdNotifier White Paper [LGV+] but should
be seen as a companion rather than as a replacement.

This document describes in technical detail three variants of CrowdNotifier:

• The basic CrowdNotifier scheme is the same scheme as described in the CrowdNotifier White
Paper [LGV+]. The version provides strong abuse resistance by requiring cooperation of
both the Location Owner and Health Authority to trigger tracing. Records stored on the
phone are private: they can only be decrypted if and only if these parties trigger tracing.

• A managed version of CrowdNotifier that enables an organization to manage many loca-
tions (for example, meeting rooms) at the same time without the overhead of storing differ-
ent tracing QR codes for each of them. This scheme has the same properties as the basic
CrowdNotifier scheme.

• A server-based version of CrowdNotifier that doesn’t require cooperation of the Location
Owner to trigger notifications, and can instead send notifications based on records uploaded
by index cases. As a result, abuse resistance is weaker – the health authority can trigger
locations on its own. However, it is fully compatible with the basic CrowdNotifier scheme
so that clients, if they want, can still enjoy full privacy protection of records on the phone.

None of these schemes reveal which Locations are notified to adversaries that didn’t visit these
locations (nor colluded with somebody that did). We refer to the academic paper for a thorough
analysis of requirements and security proofs [LGV+21].

1.1 Authors and Contributors

This technical specification was written by:

• Wouter Lueks, SPRING Lab, EPFL

• Linus Gasser, C4DT, EPFL

• Carmela Troncoso, SPRING Lab, EPFL

This document benefited from feedback by:

• Fabian Aggeler, Ubique

• Johannes Gallmann, Ubique

• Matthias Felix, Ubique

• Simon Roesch, Ubique

This document also benefited from earlier feedback on the white paper CrowdNotifier White Paper
[LGV+].

1

https://github.com/CrowdNotifier/documents/blob/main/CrowdNotifier%20-%20White%20Paper.pdf
https://github.com/CrowdNotifier/documents/blob/main/CrowdNotifier%20-%20White%20Paper.pdf
https://github.com/CrowdNotifier/documents/blob/main/CrowdNotifier%20-%20White%20Paper.pdf
spring.epfl.ch
https://c4dt.org
spring.epfl.ch
https://github.com/CrowdNotifier/documents/

CrowdNotifier Technical Specification, Release v0.1.5

1.2 License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

2 Chapter 1. Introduction

https://creativecommons.org/licenses/by-sa/4.0/

CHAPTER

TWO

TERMINOLOGY

Backend Server A backend for server-based CrowdNotifier. It replaces the Health Authority
Backend in the server-based CrowdNotifier scheme.

Health Authority The public health-authority that determines which visitors of which locations
to notify. Usually, there is only one health authority.

Health Authority Backend A backend server operated by the Health Authority.

Location A semi-public location (for example, bar, restaurant, religious building, events venue,
or meeting place) or an event which takes place in one or more locations (for example, an
exhibition).

Location Owner The owner or manager of a location. We assume each location has one owner.
We call an owner that manages multiple locations an Organization.

Organization A party that manages several locations. For example, a larger company that man-
ages several meeting rooms.

Visitor Somebody who visits a location. Sometimes called user. There can be many visitors.

3

CHAPTER

THREE

CRYPTOGRAPHIC BUILDING BLOCKS

A short overview of the cryptographic primitives used by CrowdNotifier.

3.1 Basic Primitives

• SHA256 - The usual hash function

• HKDF - Hash-Based Key Derivation Function based on HMAC and SHA256.

3.2 Symmetric-key Encryption

CrowdNotifier uses symmetric encryption to send data that only visitors of (notified) locations
can read. For this, we use a authenticated encryption scheme given by the algorithms AE.Enc and
AE.Dec. We construct these using XSalsa20 (as stream cipher) and Poly1305 (as MAC).

As implementation, we use the following algorithms from libsodium:

• AE.Enc: crypto_secretbox_easy

• AE.Dec: crypto_secretbox_open_easy

3.3 Public-key Encryption

CrowdNotifier relies on a regular CCA2 secure public-key scheme given by the algorithms KeyGen,
Enc, and Dec with the usual semantics:

• (𝑝𝑘, 𝑠𝑘)← KeyGen(). Generates a public-private key-pair.

• ctxt← Enc(𝑝𝑘,𝑚). Given a public key 𝑝𝑘 and a message 𝑚 outputs a ciphertext ctxt.

• 𝑚 ← Dec(𝑠𝑘, ctxt). Given a private key 𝑠𝑘 and a ciphertext ctxt outputs a message 𝑚 or a
failure symbol ⊥.

We construct these using X25519 for key-exchange and XSalsa20-Poly1305 for the subsequent
symmetric encryption.

As implementation, we use the following algorithms from libsodium:

• KeyGen: crypto_box_keypair

• Enc: crypto_box_seal

• Dec: crypto_box_seal_open

4

https://libsodium.gitbook.io/doc/
https://libsodium.gitbook.io/doc/secret-key_cryptography/secretbox#combined-mode
https://libsodium.gitbook.io/doc/secret-key_cryptography/secretbox#combined-mode
https://libsodium.gitbook.io/doc/
https://libsodium.gitbook.io/doc/public-key_cryptography/authenticated_encryption#key-pair-generation
https://libsodium.gitbook.io/doc/public-key_cryptography/sealed_boxes#usage
https://libsodium.gitbook.io/doc/public-key_cryptography/sealed_boxes#usage

CrowdNotifier Technical Specification, Release v0.1.5

3.4 Identity-Based Encryption

CrowdNotifier relies on an identity-based encryption scheme to provide its most important proper-
ties. In an identity-based encryption scheme, messages can be encrypted against identities without
requiring a specific key-pair to be generated for each identity. Instead, a trusted authority – in our
case usually a location owner or organization – generates a master public key mpk and a corre-
sponding master private key msk by running the IBE.KeyGen algorithm. We emphasize that each
location has its own corresponding public key mpk.

To encrypt a message 𝑚 against an identity id under the public key mpk, a party (in our case
a visitor) runs ctxt ← IBE.Enc(mpk, id,𝑚). To decrypt this ciphertext, the trust authority (e.g.,
location or organization) first computes the corresponding identity-based decryption key skid ←
IBE.KeyDer(mpk,msk, id). Given the identity-based decryption key skid a visitor (user) can then
decrypt a ciphertext ctxt encrypted under an identity id by running 𝑚← IBE.Dec(id, skid, ctxt).

We refer to the Identity-based Encryption section for the full details. For completeness, we intro-
duce the full syntax that we use:

• pp ← IBE.CommonSetup(1ℓ). Generates the common parameters pp. Typically these pa-
rameters are part of the implementation.

• (mpk,msk)← IBE.KeyGen(pp). Generates a master public-private key pair.

• skid ← IBE.KeyDer(mpk,msk, id). On input of a master public key mpk, a master private key
msk, and an identity id; outputs private decryption key skid corresponding to this identity.

• ctxt ← IBE.Enc(mpk, id,𝑚). On input of a master public key mpk, an identity id, and a
message 𝑚, outputs a ciphertext ctxt.

• 𝑚 ← IBE.Dec(id, skid, ctxt). On input of an identity id, a private key skid, and a ciphertext
ctxt, either outputs the decryption 𝑚 of ctxt, or ⊥ if decryption fails.

We implement the concrete Identity-based Encryption scheme over the BLS12-381 curve. As
instantiation we use the mcl library. We refer to later sections for more information on the imple-
mentation.

3.4. Identity-Based Encryption 5

https://github.com/herumi/mcl

CHAPTER

FOUR

BASIC CROWDNOTIFIER

The basic CrowdNotifier scheme equals the scheme presented in the white paper. The scheme we
present here has some modifications to incorporate some new insights that simplify the QR codes.

In this scheme, generating notifications requires cooperation of both the Location Owner and the
Health Authority.

4.1 Global Setup

This document fixes specific algorithm choices for the cryptographic schemes as well as the cryp-
tographic parameters of these schemes. We refer to the section on Cryptographic Building Blocks
for the details on these instantiations. We assume these algorithms and parameters are public.

4.2 Setting up a Health Authority

The Health Authority generates a public-private encryption key pair 𝑝𝑘𝐻 , 𝑠𝑘𝐻 by running KeyGen
of the public-key encryption algorithm. The health authority publishes 𝑝𝑘𝐻 and privately stores
𝑠𝑘𝐻 at the Health Authority Backend.

This key-pair provides an extra layer of privacy protection for encrypted visits stored on a user’s
phone. To decrypt these visits, an attacker would need to obtain both skH as well as the private
information stored by the Location Owner.

Since we use libsodium, the health authority simply runs crypto_box_keypair to gener-
ate this key-pair.

4.3 Setting-up a Location

To set up a Location the Location Owner runs the setup program. This program will output two
QR codes: a public QR code QRentry and a private QR code QRtrace. For security reasons, this setup
program must run client-side. We propose to use client-side JavaScript to statelessly generate the
PDFs containing the QR codes.

The Location Owner provides a description of the location (e.g., name, address, type). Setup then
proceeds as follows. It computes two IBE key pairs (one for the location, and one for the health
authority)

(mpkL,mskL)← IBE.KeyGen(pp),
(mpkHA,mskHA)← IBE.KeyGen(pp)

and computes mpk = mpkL · mpkHA ∈ 𝐺2. It encrypts the master secret key mskHA for the health
authority by creating the ciphertext ctxtHA = Enc(𝑝𝑘𝐻 ,mskHA). It deletes and does not store the
value mskHA. Finally, it picks a random 32-byte seed seed.

In code, the setup script computes the following values:

6

CrowdNotifier Technical Specification, Release v0.1.5

// Input: the public key pkha of the Health Authority

// Generate IBE key pairs
const [mpkl, mskl] = IBEKeyGen();
const [mpkha, mskha] = IBEKeyGen();

// Compute resulting master public key
const mpk = mcl.add(mpkl, mpkha);

// Compute encrypted master secret key for health authority
const ctxtha = crypto_box_seal(mskha.serialize(), pkha);

// Generate seed
const seed = randombytes_buf(32);

The setup program then encodes these values into two QR codes:

1. The entry QR code QRentry containing the description of the location, mpk and the seed seed.

2. The tracing QR code QRtrace containing the same values as QRentry and additionally mskL and
ctxtHA.

To provide strong abuse-prevention properties, it is essential that the setup procedure does not store
the master private key mskHA. By only storing the encrypted version ctxtHA, both the data stored
securely in the tracing QR code QRtrace as well as cooperation of the Health Authority (to decrypt
ctxtHA) are needed to compute tracing keys. As a result, the Location Owner is protected against
coercion attacks.

4.3.1 Entry QR Code Format

Warning: The precise QR code format might see some minor updates in the near future.

CrowdNotifier adopts a standard payload format to encode data into the QR code QRentry that is
scanned by visitors. We use the following standard protobuf format:

syntax = "proto3";

message QRCodePayload {
uint32 version = 1;
TraceLocation locationData = 2;
CrowdNotifierData crowdNotifierData = 3;

// Country-specific location information
bytes countryData = 4;

}

message TraceLocation {
uint32 version = 1;
// max. 100 characters
string description = 2;
// max. 100 characters
string address = 3;

// UNIX timestamp (in seconds since Unix Epoch)
uint64 startTimestamp = 5;
// UNIX timestamp (in seconds since Unix Epoch)
uint64 endTimestamp = 6;

}

message CrowdNotifierData {
uint32 version = 1;
bytes publicKey = 2;
bytes cryptographicSeed = 3;
uint32 type = 4; // exact semantic tbd

}

4.3. Setting-up a Location 7

CrowdNotifier Technical Specification, Release v0.1.5

The setup program includes the description of the location in the TraceLocation structure.
It adds potential other country-specific information to the countryData field. The start-
Timestamp and endTimestamp denote the validity time of this QR code.

The CrowdNotifierData structure encodes the CrowdNotifier elements as described above.
The publicKey field encodes the master public key mpk as a byte array. We use mcl’s serializa-
tion format. See the section on serialization for more details. The cryptographicSeed fields
encode the 32-byte seed seed as a byte array.

Note: The QR code format does not include a country code. Instead, apps should use the URL
embedded in the QR code to deduce the corresponding country.

Finally, the payload protobuf must be encoded into a QR code. There are different methods for
doing this. The most obvious approach is to encode a URL in the QR code that includes the
encoded payload protobuf.

NotifyMe

The NotifyMe app encodes the following URL in the QR code:

https://qr.notify-me.ch?v=3#<base64-encoded-protobuf>

Users scan this QR code either directly with the corresponding app, or with their camera appli-
cation. When the app is not installed, phones open this url in the browser. Including the payload
after the anchor tag ensures that it is not sent to the server. Ensuring that the server doesn’t learn
which locations the user is visiting.

4.4 Visiting a Location

Upon entering a Location, the user uses their app to scan the corresponding entry QR code QRentry
and obtain the values encoded therein. The app shows a description of the location based on the in-
formation in the locationData and countryData fields. Then the app asks for confirmation
that the user wants to check in.

At this point the app stores the check-in time. After a while, the app learns that the user left the
Location. Several mechanisms are possible:

• That app sends a reminder to the user after at time chosen during check-in

• The QR code contains a default time, and checks the user out automatically.

In both cases, it might be helpful if apps allow users to adjust the check-in and check-out times to
reflect the actual time in the Location. So that the app can store the correct records, even if the
user only remembers to checkout later.

Given the arrival time arrival time and departure time departure time, as well as the
master public key mpk and seed seed encoded in the CrowdNotifierData part of the payload,
the app proceeds as follows:

1. The app uses the QR code payload payload to compute the notification key notifykey and the
time-specific identities id using the process detailed in the next section.

2. The app encodes a record 𝑚 capturing the arrival and departure times, as well as the notifi-
cation key notifykey:

𝑚 = (arrival time, departure time, notifykey)

8 Chapter 4. Basic CrowdNotifier

CrowdNotifier Technical Specification, Release v0.1.5

3. For each identity id computed in step 1, the app computes the ciphertext

ctxt← IBE.Enc(mpk, id,𝑚)

and stores it together with a label for the current day. The app does not store any of the other
data computed as part of this process.

The following code-block shows an example.

// Calculate the MessagePayLoad m as a JSON string
const messagePayload: MessagePayload = {

arrivalTime: arrivalTime,
departureTime: departureTime,
notificationKey: venueInfo.notificationKey,

};
const msgPBytes = from_string(JSON.stringify(messagePayload));

// Encrypt the record m using the IBE scheme
const ctxt = enc(masterPublicKey, identity, msgPBytes);

Devices automatically delete any entry older than 10 days.

4.4.1 Computing Identities and Keys

As part of the process to visit a Location, the app computes time-specific identities corresponding
to the user’s visit to this Location. These time-specific identities correspond to time intervals that
overlap with the user’s visit. Currently, these intervals are all exactly 1 hour long, correspond-
ing to a interval length of intervalLength = 60*60 = 3600 seconds. But the following
specification supports different interval lengths.

1. The app derives three 32-byte values noncepreid, noncetimekey, and notifykey from the QR code
using HKDF:

noncepreid ‖ noncetimekey ‖ notifykey = HKDF(96, payload,"","CrowdNotifier_v3")

where the input key material payload is the raw protobuf (e.g., after base64 decoding, but
before parsing), the salt is empty, and "CrowdNotifier_v3" is the info string.

The 32-byte cryptographicSeed in the payload ensures that the input key material has
sufficient entropy. By using the entire payload as input key material rather than only this
seed, we ensure maximal entropy, even if the cryptographicSeed is shorter.

2. The app computes a pre-identity for the Location:

preid = SHA256("CN-PREID" ‖ payload ‖ noncepreid)

The input to the hash-function is the concatenation of 3 byte arrays: the ASCII encoded 8-
byte string CN-PREID for domain separation, then the raw payload, and finally the 32-byte
nonce noncepreid.

3. For each supported interval length intervalLength in seconds (currently only 1 hour, corre-
sponding to 3600 seconds, is used) compute the interval start times intervalStart (in seconds
since UNIX epoch) for all intervals of length intervalLength that overlap with the user’s visit.
The start times must be aligned with the start of the interval, e.g., intervalStart %
intervalLength == 0.

4. For each interval length intervalLength (in seconds), and interval start time intervalStart (in
seconds since UNIX epoch) compute the corresponding identity key timekey:

timekey = SHA256("CN-TIMEKEY" ‖ intervalLength ‖ intervalStart ‖ noncetimekey),

where the inputs to the hash-function is the concatenation of the following values:

• The 8-byte ASCII encoding of the string CN-TIMEKEY

4.4. Visiting a Location 9

CrowdNotifier Technical Specification, Release v0.1.5

• The 4-byte big-endian encoding of the value intervalLength (900 <= interval-
Length <= 86400)

• The 8-byte big-endian encoding of intervalStart

• The 32-byte nonce noncetimekey.

Next, compute the corresponding time-specific identity

id = SHA256("CN-ID" ‖ preid ‖ intervalLength ‖ intervalStart ‖ timekey),

where the inputs to the hash-function is the concatenation of the following values:

• The 5-byte ASCII encoding of the string CN-ID

• The 32-byte SHA256 output preid

• The 4-byte big-endian encoding of the value intervalLength (900 <= interval-
Length <= 86400)

• The 8-byte big-endian encoding of intervalStart

• The 32-byte SHA256 output timekey

In code, the app proceeds as follows:

// Calculate the values using the HKDF
const hkdf = require('futoin-hkdf');

const ikm = qrCodePayload;
const length = 96;
const salt = ''; // salt is empty
const info = 'CrowdNotifier_v3';
const hash = 'SHA-256';

const derivedBuffer: Uint8Array = hkdf(ikm, length, {salt, info, hash});
const noncepreid = derivedBuffer.slice(0, 32);
const noncetimekey = derivedBuffer.slice(32, 64);
const notificationKey = derivedBuffer.slice(64, 96);

// Calculate the pre-identity for the Location
const preid = crypto_hash_sha256(

Uint8Array.from([
...from_string('CN-PREID'),
...qrCodePayload,
...noncepreid,

]),
);

// Currently only one intervalLength is supported
const intervalLength = 3600;

// `intervals` contains the `intervalStart` times for the whole duration of the
// visit.
const ids = intervals.map((id) => {

timekey = crypto_hash_sha256(
Uint8Array.from([

...from_string('CN-TIMEKEY'),

...toBytesInt32(intervalLength),

...toBytesInt64(intervalStart), // timestamp might use up to 8 bytes

...noncetimekey,
]),

id = crypto_hash_sha256(
Uint8Array.from([

...from_string('CN-ID'),

...preid,

...toBytesInt32(intervalLength),

...toBytesInt64(intervalStart), // timestamp might use up to 8 bytes

...timekey,
]),

)
(continues on next page)

10 Chapter 4. Basic CrowdNotifier

CrowdNotifier Technical Specification, Release v0.1.5

Fig. 4.1: Overview of process to initiate presence notification

(continued from previous page)
return id;
});

4.5 Initiating Presence Notification

After the contact tracing team of the Health Authority has determined that a SARS-CoV-2-positive
person has visited a location during the contagious period, they proceed as follows. Let entry’ and
exit’ be the times that the SARS-CoV-2-positive person entered and exited this location. See Fig.
4.1 for an overview.

• Step A (upload request). The contact tracing team contacts the Location Owner of the Lo-
cation and requests an upload of the hour-specific pre tracing keys to the health authority’s
servers. They also provide the Location Owner with a means to authenticate this upload,
for example a one-time token. Finally, the tracing team specifies a message 𝑚 that should
be sent to the notified users. They upload this message to the Health Authority Backend.

• Step B (location owner upload). The location owner scans the tracing QR code QRtrace with
their app to obtain the payload payload of the entry QR code, as well as the values mskL and
ctxtHA. The app then proceeds as follows

1. The app authenticates to the Health Authority Backend (e.g., using the one-time token)
and obtains the entry’ and exit’ times corresponding to the index case.

2. The app uses the QR code payload payload and the times entry’ and exit’ to compute the

4.5. Initiating Presence Notification 11

CrowdNotifier Technical Specification, Release v0.1.5

relevant time-specific identities id using the process detailed in the next section.

3. For each identity id computed in the previous step it computes the partial identity-based
decryption key

pskL
id = IBE.KeyDer(mskL, id).

Let the pre-tracing key be ptrid = (id, pskL
id).

4. The app uploads payload, ctxtHA, and all pre-tracing keys ptrid to the Health Authority
Backend.

• Step C (health authority process upload). The health authority’s system processes each
upload as follows.

1. It decrypts ctxtHA to obtain mskHA.

2. It uses the QR code payload payload and the times entry’ and exit’ to recompute the
relevant time-specific identities id using the process detailed in the next section.

3. It parses the pre-tracing keys ptrid as (id, pskL
id) and discards any entries with identities id

it did not compute in the previous step. Next, it computes its part of the identity-based
decryption key

pskHA
id = IBE.KeyDer(mskHA, id).

and computes the final identity-based decryption key

skid = pskL
id · pskHA

id .

Let trid = (id, skid).

4. It validates the computed tracing key trid = (id, skid). To do so, it picks a random mes-
sage 𝑚 of sufficient length and computes the ciphertext ctxt ← IBE.Enc(mpk, id,𝑚),
and verifies that IBE.Dec(skid, id, ctxt) = 𝑚. If the check fails, it removes the upload.

• Step D (upload validation). The contact tracing team checks that the uploaded tracing-keys
correspond to the expected Location. To do so, they compare the description of the loca-
tion in the supplied payload with the expected location. This validation step could happen
automatically.

• Step E (publication of tracing keys). To publish the tracing keys, the Health Authority Back-
end proceeds as follows:

1. The server formats creates notification data notificationdata that contains the message
𝑚 (specified in step A) as well as information about the notification interval. This
package also contain extra machine-readable information such as the severity of the
warning:

notificationdata = (entry’, exit’,𝑚)

see the definition of AssociatedData below for a concrete ProtoBuf based instantiation.

2. Finally, the Health Authority Backend uses payload to recompute the notification key
notifykey and computes 𝑐notify = AE.Enc(notifykey, notificationdata), the encrypted mes-
sage for the notified visitors, and for each relevant timeslot it publishes a record
(trid, day, 𝑐notify), where day corresponds to the day (since the UNIX epoch) on which
this timeslot begins. See the definitions of ProblematicEvent and ProblematicEven-
tWrapper below for concrete ProtoBuf based instantiations.

Note: As for DP3T-based application, the Health Authority Backend should publish tracing
records via a CDN to facilitate downloading by millions of clients.

12 Chapter 4. Basic CrowdNotifier

CrowdNotifier Technical Specification, Release v0.1.5

4.5.1 Data Formats

The CrowdNotifier uses the following standard encrypted payload format to encode notificationdata:

syntax = "proto3";

message AssociatedData {
int32 version = 1;
string message = 2;

// UNIX timestamp (in seconds since Unix Epoch)
int64 startTimestamp = 3;
// UNIX timestamp (in seconds since Unix Epoch)
int64 endTimestamp = 4;

bytes countryData = 5;
}

This data structure follows the same structure as the entry QR code format defined above. The
countryData can be used to insert other country-specific information. It is currently not used.

The per time-slot event data (trid, day, 𝑐notify) is wrapped in a ProblematicEvent:

syntax = "proto3";

message ProblematicEventWrapper {
int32 version = 1;
repeated ProblematicEvent events = 2;

}
message ProblematicEvent {

int32 version = 1;
bytes identity = 2;
bytes secretKeyForIdentity = 3;

// UNIX timestamp corresponding to day start (in seconds since Unix Epoch)
int64 day = 4;

bytes encryptedAssociatedData = 5;
bytes cipherTextNonce = 6;

}

Recall that trid = (id, skid). In the ProblematicEvent protobuf, identity encodes id, and
day encodes the start of day (in seconds since UNIX Epoch).

The field secretKeyForIdentity encodes skid serialized as per the specification in the build-
ing blocks section. The ciphertext 𝑐notify is encoded by encryptedAssociatedData and ci-
pherTextNonce. The ciphertext follows the libsodium encoding, see the cryptographic
building blocks for more details.

A sequence of such tuples is wrapped in a single ProblematicEventWrapper.

4.6 Presence Tracing and Notification

The user’s app regularly (say, every few hours) performs the following checks:

1. The app downloads all (trid, day, 𝑐notify) tuples that were published since the last time it
checked.

2. For each tuple downloaded (trid, day, 𝑐notify) let trid = (id, skid). The app proceeds as follows.

1. For each record ctxt recorded on a day corresponding to day, the app tries to decrypt it
using IBE.Dec(id, skid, ctxt). The app selects records where decryption succeeds (i.e.,
those not equal to ⊥).

2. For all selected records ctxt, the app uses the plaintext of ctxt to recover the arrival time,
departure time and the notification key notifykey.

4.6. Presence Tracing and Notification 13

CrowdNotifier Technical Specification, Release v0.1.5

3. The app then uses notifykey to decrypt 𝑐notify and recover:

notificationdata = (entry’, exit’,𝑚)

if decryption fails, it moves on to the next matching tuple.

4. The app checks if there is an overlap between the user’s time at the location and what
is indicated by entry’ and exit’. If there is an overlap, the app uses 𝑚 to notify the user.

14 Chapter 4. Basic CrowdNotifier

CHAPTER

FIVE

MANAGED CROWDNOTIFIER

In this section we introduce a managed version of CrowdNotifier where an Organization manages
many Locations at once without having to store a tracing QR code for each.

The design in the white paper assumes that each Location Owner manages a single location, and
can thus store the single tracing QR code containing the tracing information. In reality, a single
restaurant may consist of several different rooms, or locations. And a large company might want
to manage many (meeting) rooms at the same time. In these cases, storing tracing QR codes for
each of these locations becomes cumbersome. Instead, we show how a single tracing key can be
used to manage all rooms and locations under control of the same entity.

5.1 The Idea

In the basic CrowdNotifier scheme, the Location Owner creates one master public key and cor-
responding private keys per location. In this section we show how the same master key can be
used for all Locations managed by the same Organization. Thereby drastically simplifying key
management.

The Organization still needs to store information to facilitate tracing. We assume the Organization
has a local database in which it keeps track of the following values:

• The master public key mpk for this Organization

• The ciphertext ctxtHA for the Health Authority

• For each Location, a copy of the QR code payload.

To initiate notifications, the Organization also needs the master secret key mskO. The security of
tracing information hinges on keeping the master secret mskO secure. In the following, we describe
how this key can be derived from a passphrase. As a result, no security-critical information needs
to be stored in the local database. The passphrase itself can be stored in a password management
system.

Given the local database, and the master secret key, the manager can recover all information needed
for tracing, and compute the per location tracing keys. In the following, we describe these steps in
more detail below.

15

CrowdNotifier Technical Specification, Release v0.1.5

5.2 Organization Setup

Initializing an Organization proceeds as follows:

1. The system generates a strong passphrase of at least 256 bits of entropy. The operator
should store the passphrase securely, for example in a password management system. The
passphrase is the only security-critical component and is only needed to initiate tracing of
rooms. It is not needed to add new rooms to the system.

2. First, setup computes the organization’s master secret key as using the passphrase:

mskO ← 𝐻(passphrase) mod 𝑝,

where 𝑝 is the group order and mpkO = 𝑔mskO
2 the corresponding Organization’s public key.

Ideally, the output of 𝐻 should be much longer than the bit length of 𝑝. For example, using
SHA512 for 𝑝 of 256 bits. Alternatively, mskO can be directly computed by an appropriate
method for hashing to the field Z𝑝 if provided by the cryptographic library.

3. Setup then proceeds as in the original QR code generation process to compute the health
authority key-pair mpkHA,mskHA; the encrypted master secret key ctxtHA for the health au-
thority; and the master public key mpk = mpkO ·mpkHA. See the Setting-up a Location in the
basic CrowdNotifier scheme.

4. The system then stores mpk and ctxtHA in the local database. It does not store any of the other
generated values. In particular, as in the basic CrowdNotifier scheme, it is essential for abuse
resistance that the setup process does not store mskHA.

In code, the setup script computes the following values:

// Input: the public key pkha of the Health Authority
// Input: strong passphrase pp

// Generate mskO, mpkO from passphrase pp
const mskO = new mcl.Fr();
mskO.setHashOf(from_string(pp));
const mpkO = mcl.mul(baseG2(), mskO);

// Compute IBE key-pair for health authority
const [mpkha, mskha] = keyGen();

// Compute resulting master public key
const mpk = mcl.add(mpkO, mpkha);

// Compute encrypted master secret key for health authority
const ctxtha = crypto_box_seal(mskha.serialize(), pkh);

5.3 Setting-up a New Location

To add a new Location, the Organization supplies the information describing the new Location
(e.g., name, address), see also the entry code format. The system then proceeds as in the basic
scheme, except that it uses the master public key mpk from the database:

1. Retrieve the master public key mpk from the local database.

2. Pick a random 32-byte seed seed

3. Construct the entry QR code as in the basic scheme by including mpk, seed, and the descrip-
tion of the location.

4. Store the resulting QR-code payload in the local database.

16 Chapter 5. Managed CrowdNotifier

CrowdNotifier Technical Specification, Release v0.1.5

5.4 Initiating Presence Notification

To initiate tracing, the Health Authority contacts the Organization and specifies the room/location
for which it wants to notify the visitors. The operator uses the passphrase generated initially to
recover the information that would normally be in the tracing QR code as follows:

1. The Organization enters the passphrase into the local system. The system recomputes the
organization’s master secret key mskO from the passphrase.

2. The system retrieves the master public key mpk and the encrypted master secret key ctxtHA
of the health authority from the database.

3. For the location (e.g., a room) specified by the Health Authority, retrieve the stored payload
payload from the database.

4. Proceed as in initiating presence notification of the basic scheme where mskL = mskO.

5.4. Initiating Presence Notification 17

CHAPTER

SIX

SERVER-BASED CROWDNOTIFIER

In the basic CrowdNotifier scheme, triggering notification requires cooperation of both the Health
Authority and the Location Owner (or Organization, when using the managed version of CrowdNo-
tifier). The need for two parties strengthens the abuse resistance of the solution. It ensures that the
Health Authority on their own cannot trigger notifications. Additionally, it enables users to receive
notifications based on encrypted data stored on the phone, providing strong privacy protection of
phone records.

An alternative design choice can be to prioritize speed of notification, by choosing what venues
should trigger notifications without relying on decisions by the Health Authority. Instead, the
decision to trigger can be made automatically, either at the server, e.g. [RBC21], or on the phone,
e.g., the initial proposal by the CoronaWarnApp team1. In this approach, notifications are sent
without explicit approval by health authorities, and without explicit approval by venue owners.

Visitors’ phones store clear text records of (possibly ephemeral) identifiers of visited Locations
together with the visit times. The Health Authority provides index cases with an authorization to
upload these identifiers and times to the backend server. Other phones download these identifiers
and times and compare them against their own records. If there is an overlap, the phone notifies
the user.

In this section we propose a variant of CrowdNotifier, called Server-Based CrowdNotifier. This
variant facilitates automatic notifications mechanism based on uploads by index cases, while being
interoperable with the basic CrowdNotifier protocol and its clients. The basic and server-bases
approaches are interoperable in that clients are always notified regardless of scheme:

• Basic CrowdNotifier clients can operate in regions that deploy Server-Based CrowdNotifier.
They scan QR codes, they store encrypted records with strong privacy protections as before,
and they can determine exposure and notify their users just like Server-Based CrowdNotifier
clients.

• Server-Based CrowdNotifier clients can operate in regions that deploy the basic CrowdNo-
tifier scheme. They scan QR codes, they store records (containing identifiers) as before, and
they can determine exposure and notify their users just like basic CrowdNotifier clients in
these regions.

6.1 Implications of Automatic Triggering

Automating the triggering decision process brings the following differences with respect to the
basic CrowdNotifier.

First, the lack of filtering by a Health Authority is likely to result in the system triggering more
notifications than if the Health Authority was involved. Depending on how many CrowdNotifier
locations users visit, there may be an increase in the number of notifications they receive. This can
result in notification fatigue, and in users ignoring these notifications.

Second, because in this approach phones need to store clear text records to enable uploads, anyone
with access to the phone can learn the identifiers of the places where the user has been. To ensure

1 https://github.com/corona-warn-app/cwa-documentation/blob/master/event_registration.md

18

https://github.com/corona-warn-app/cwa-documentation/blob/master/event_registration.md

CrowdNotifier Technical Specification, Release v0.1.5

privacy of the records stored on the phone, Locations should frequently rotate their identifiers and
the corresponding QR codes. If the QR codes remain static, privacy of records is limited. On the
contrary, even if the QR codes are static, the basic CrowdNotifier protocol still guarantees privacy
of stored records.

Third, if QR codes are not rotated, malicious actors can use identifiers they know (e.g., via crowd-
sourcing collection) to trigger notifications for locations they did not visit if they also have an
upload authorization.

Fourth, the upload of Locations visited by the same user and/or the publication of Locations vis-
ited by a small group of index cases, may enable an adversaries to learn information about user
patterns and co-locations. In the basic CrowdNotifier scheme, since the Health Authority is the
one triggering notifications, neither uploads nor downloads leak any information about users.

We provide an in-depth security and privacy analysis of Server-Based CrowdNotifier at the end of
this section.

6.2 Overview of Server-Based CrowdNotifier

The key idea of Server-Based CrowdNotifier is to let the central Backend Server replace the roles
of the Health Authority and Location Owner in the basic CrowdNotifier scheme. To this end, the
Backend Server can generate tracing keys that let basic CrowdNotifier clients decrypt their records
after receiving appropriate uploaded information from the index case.

To enable this shift, we build on the managed CrowdNotifier scheme, and let the Backend Server
generate a single master public-private key pair. The corresponding master public key is included
in all QR codes in the region managed by this server. The Backend Server locally stores the
corresponding master secret key.

Index cases upload the information they collected about the locations they visited to the Backend
Server. The backend uses this information to compute the relevant tracing identities, and uses the
master secret key to compute the corresponding tracing keys. Finally, the backend transmits the
tracing keys to all clients. We recall that the tracing identity is just cryptographic material. To run
this process, the backend does not need to know the venue’s real data.

We next detail the steps of Server-Based CrowdNotifier.

6.3 Setting up the Backend Server

The Backend Server generates a master public key mpkS and a corresponding master secret key
mskS by running IBE.KeyGen of the identity-based encryption algorithm. The server publishes
mpkS and privately stores mskS.

6.4 Setting-up a Location

To set up a Location the Location Owner runs the setup program. This process proceeds in much
the same way as in the basic CrowdNotifier scheme, but skips the key-generation steps. The pro-
gram outputs one public QR code. In Server-Based CrowdNotifier their is no corresponding private
QR code.

For security reasons, the setup program must run client-side. We propose to use client-side
JavaScript to statelessly generate the PDFs containing the QR code.

The Location Owner provides a description of the location (e.g., name, address, type). Setup then
proceeds as follows.

1. It retrieves the master public key mpkS of the server.

6.2. Overview of Server-Based CrowdNotifier 19

CrowdNotifier Technical Specification, Release v0.1.5

2. It picks a random 32-byte seed.

Setup then generates the public QR code by encoding it into standard QR-code format. In partic-
ular, it inserts the location information, the seed it just generated, and the server’s master public
key mpkS.

6.5 Visiting a Location

When visiting a location basic CrowdNotifier clients proceed as in the basic scheme. Server-Based
CrowdNotifier clients proceed differently to support uploads.

As before, we assume the app gathers the arrival time arrival time and departure time de-
parture time. See the basic scheme for more details. The app then proceeds as follows.

1. Using the process detailed for the basic CrowdNotifier scheme the app derives from the QR
code payload: the pre identity preid for the Location, the notification key notifykey, and for
each interval (intervalLength, intervalStart) that overlaps with the user’s visit the time-specific
keys timekey and identities id. This process requires only basic cryptographic primitives.

2. The app creates a visit record containing arrival time, departure time, the pre
identity preid, the notification key notifykey, and the time specific tuples:

(intervalLength, intervalStart, timekey, id).

3. The app stores the visit record. When extra privacy is required, the app can encrypt the
visit record against the public key of the Health Authority and additionally store the basic
CrowdNotifier encrypted record to match notifications.

The pre identity preid and values (timekey, id) are needed to enable the Backend Server to compute
the location tracing keys. The notification key notifykey is needed decrypt notification messages
from the backend, and to enable the Server-Based CrowdNotifier backend to send encrypted tracing
data to basic CrowdNotifier clients.

When records are stored in the clear, apps use the computed identities id to recognize tracing keys
published by basic CrowdNotifier systems. Otherwise, when storing CrowdNotifier encrypted
records, clients proceed as in the basic CrowdNotifier scheme.

6.6 Initiating Presence Notification

In Server-Based CrowdNotifier, presence notification is initiated by an index case that has been
tested positive for SARS-CoV-2. We assume that the user has an upload authorization and that the
Backend Server knows the corresponding contagious window.

The app and server proceed as follows:

1. The app sends its upload authorization to the Backend Server to obtain the corresponding
contagious window.

2. For each record corresponding to this contagious window, the app uploads: the (possibly
rounded) arrival and departure times, the pre identity preid, the notification key notifykey,
and the tuples

(intervalLength, intervalStart, timekey).

3. The Backend Server validates the uploaded data. In particular, it checks that:

• All reported visits fall within the user’s contagious window as established by the Health
Authority.

20 Chapter 6. Server-Based CrowdNotifier

CrowdNotifier Technical Specification, Release v0.1.5

• Individual records are not too long (e.g., at most the maximum duration allowed by the
app)

• Validates that the reported tuples (intervalLength, intervalStart) are correctly formed
and the corresponding interval overlaps the reported visit times for the correspond-
ing record.

• That the user does not report being in more than one place at the same time. To do so,
the server checks that the time intervals covered by the records do not overlap. Or, in
case the app reports rounded interval lengths do not overlap more than what would be
allowed because of time grunularity.

Optionally, if the Backend Server applies a heuristic to determine when to trigger a Location
it can store and filter the uploaded data before proceeding to the next step.

4. The Backend Server then proceeds as follows for each uploaded (or selected) record.

1. It uses the pre identity preid, and corresponding tuples

(intervalLength, intervalStart, timekey)

to recompute the corresponding time-specific identities id for this record following the
process laid out for the basic scheme

2. For each of these identities id it computes the corresponding identity-based decryption
key

skid = IBE.KeyDer(mskS, id)

using its master secret key mskS. Let trid = (id, skid).

3. The server now proceeds as in basic CrowdNotifier step E to compute tuples
(trid, day, 𝑐notify)where it instead uses the notification key notifykey provided by the client
rather than recomputing it from scratch.

5. Regularly, the server publishes a shuffled batch of tuples (trid, day, 𝑐notify).

The information that is uploaded to the backend server – the pre identity preid, the notification key
notifykey, and the values timekey – do not reveal to non-visitors any information about the Locations
they correspond to. The cryptographic procedure used to compute these and the presence of a
strong cryptographic seed in the QR codes ensures that without knowledge of the seed, these values
are pseudo random.

The values timekey are time-slot specific. As a result, a malicious server can only compute identities
id for the time slots reported by the app. The basic CrowdNotifier scheme instead relies on the
Location Owner to validate the requested time slots to protect against malicious servers.

We assume that apps use cover traffic to hide from network observers that a user has been diagnosed
with COVID-19. When Server-Based CrowdNotifier is combined with a GAEN-enabled app, this
dummy traffic should be aligned so as not to trivially reveal real uploads. We refer to the DP-3T
best practices document [DP3TTeam] for more details on how to do this.

6.7 Presence Tracing and Notification

The records published by the server have exactly the same format as in the basic CrowdNotifier
scheme. These records will enable apps to decrypt the encrypted records, as they contain the
correct identity-based decryption keys corresponding to the QR codes that these clients scanned.
So notification will proceed exactly as for the basic scheme.

Since Server-Based CrowdNotifier clients store more extensive records, they can avoid the trial
decryption step. These apps proceed as follows.

1. The app downloads all (trid, day, 𝑐notify) tuples that were published since the last time it
checked. Let trid = (id, skid).

6.7. Presence Tracing and Notification 21

CrowdNotifier Technical Specification, Release v0.1.5

2. The app checks if any of the records it stored contain the identity id. If so, the app uses the
stored notifykey in that record to decrypt 𝑐notify and recover:

notificationdata = (entry’, exit’,𝑚)

if decryption fails, it moves on to the next matching tuple.

3. The app compares the reported visit times entry’ and exit’ with the visit times it stored. If
there is an overlap it notifies the user using the recovered message 𝑚.

6.8 Security and Privacy Analysis

We provide an analysis of the privacy properties of Server-Based CrowdNotifier. We refer to the
white paper [LGV+] for a detailed description of the properties we refer below as PUX, PLX, or
SX.

6.8.1 Privacy of Users

We first consider privacy of users. Like in the Basic CrowdNotifier, there is never any collection
of personal data at a location (ensuring PU2). There is no network traffic related to notifications,
and thus no adversary can learn who is notified based on network traffic (ensuring PU4). Privacy
of positive status is protected from network adversaries by dummy uploads using the methods
described in [DP3TTeam] (ensuring PU5).

If records are stored in the clear, as described above, PU3 is not fulfilled. Below, we describe a
modification which enables users to store records that do not directly reveal the locations’ identifier
stored on the phone. This ensures that the Server-Based CrowdNotifier records stored on a user’s
phone do not reveal a user’s visits (ensuring PU3).

Finally, regarding central collection of data (PU1), in Server-Based CrowdNotifier there is no ex-
plicit central collection of visitor data. However, some information about users’ might be deduced
based on the interactions of the system. These leaks are inherent to the fact that in Server-Based
CrowdNotifier, to enable fast notifications, users upload their visited locations in a single group,
and mixed batches of such groups are published without large delays.

For our analysis we separate two adversaries: the Backend Server and other users.

Adversarial Backend Server

The Backend Server receives all uploaded information from a single positive user in a single group.
The Backend Server can derive the following information from these uploads.

1. If the Backend Server can map identifiers (or QR codes) to real locations, the backend can
learn groups of locations visited by positive users. If the system is deployed with a registra-
tion service for venues, the backend would know all identifier-location pairs.

2. From the timestamps in the records uploaded, the Backend Server can learn temporal pat-
terns about positive users (e.g., whether users work morning shifts or work night shifts).

3. As uploaded location identifiers are shared among users, the server can learn co-locations
among positive users at a location.

Whether in the previous attacks the Backend Server can map users to real identities depends on
whether users communicate anonymously with the Backend Server. Re-identification can also
happen if the groups of locations can only be associated to one or few users. To reduce the power
of this attack, we recommend that users are given the capability to redact the traces they upload to
skip compromising or identifying locations.

We discuss below mechanisms to mitigate these attacks.

22 Chapter 6. Server-Based CrowdNotifier

CrowdNotifier Technical Specification, Release v0.1.5

Adversarial Users

The Backend Server regularly broadcasts batches of data uploaded by positive users. An adver-
sarial user (or anyone else) can uses these public batches to try to learn information about the
visit patterns of positive users. This adversary cannot associate records in the published batches
to individual users because the Backend Server anonymizes records before broadcasting them.

Published records consists of a time-specific location identifier and other cryptographic informa-
tion. Records that the adversary cannot map to real locations, e.g., because the adversary doesn’t
know the corresponding QR code, provide very little information. At best, the adversary can de-
tect the existence of high-risk events because the same identifier is reported more than once. The
adversary, however, cannot associate these repeated identifiers to a location, nor to a specific time
slot.

The adversary can learn more information about published batches if it can map records to real
locations. To do so, it can use the information contained in that location’s QR code. It can obtain
these QR codes by visiting these locations either individually, or crowd-sourcing the visits to a
group of collaborators.

Given these QR codes, the adversary can try to recover partial location traces. For each batch of
released identifiers, it looks up the corresponding visited locations and visit times. The adversary
can then use geographic information (where locations are) and timing (when they were visited),
to try to reconstruct potential location traces. And from these traces re-identify positive users.
These attacks are easier to do when the location traces published in the same batch do not mix
(e.g., the batch contains visits from one user that lives in Zurich, and one set of visits from a user
in Lausanne).

There are several options to mitigate this attack:

1. Ensure that QR codes of Locations are rotated frequently to make collecting QR codes much
harder. We expect this to be the case for private events, where QR codes are one-use.

2. Release tracing information in larger batches, to decrease the probability of identifying the
underlying location traces. This would delay the publication of traces and therefore the
notifications, reducing the advantage of Server-Based CrowdNotifier over the basic protocol.

3. Apply a filter on published location data to only release the urgent (e.g., reported more than
once) locations; or only those in which the risk of transmission is high (e.g., release bars,
but not a seated dining with social distancing).

6.8.2 Privacy of Locations

The following properties are shared between the Server-Based CrowdNotifier and basic Crowd-
Notifier schemes with respect to Locations: Non-visitors (that do not collude with visitors) cannot
recognize the broadcasted information, and thus cannot determine which locations where noti-
fied (ensuring PL1). To ensure location privacy with respect to non-contemporary visitors (PL2),
locations must frequently rotate their QR code. Server-Based CrowdNotifier does not require a
database of locations (PL3 achieved), and does not require uploads by locations (PL4 achieved).

6.8.3 Security

We focus on abuse prevention properties: prevention of fake notification for users (S1) and preven-
tion of notifications targeting a particular location (S2). The basic CrowdNotifier scheme requires
cooperation of the Location Owner and the Health Authority to trigger notifications. Server-Based
CrowdNotifier has less strict protections.

First, the Backend Server can trigger notifications for any Location for which it can obtain the QR
code at that Location.

Second, when uploaded traces by index cases are not validated, malicious users might add arbitrary
visits to their uploads; either by reporting different visit times, or by reporting locations that they

6.8. Security and Privacy Analysis 23

CrowdNotifier Technical Specification, Release v0.1.5

did not visit (using QR codes they obtained elsewhere). This opportunity can be used by malicious
users (or the Backend Server) to target visitors of particular locations.

To mitigate the second attack, we recommend to sanity check uploads and to limit both the number
of reported visits as well as their duration.

6.9 Privacy enhancements

6.9.1 Improving privacy of records in the app

As explained in the CrowdNotifier white paper [LGV+], users might need strong privacy properties
of the records stored on their phone. In the variant explained above, an adversary with access to
the user’s phone and the location records stored therein, and who has access to the QR code of the
Location visited by that user, can easily determine where users went. In the basic CrowdNotifier
scheme this attack does not work.

The Server-Based CrowdNotifier scheme admits an easy modification that strengthens privacy
of records on the phone. To do so, clients use the basic CrowdNotifier approach and store an
encrypted record for their visit. Only when the server generates correct tracing keys can this record
be decrypted.

To enable notification of other users, Server-Based CrowdNotifier requires clients to store other
data – the pre identity preid, the notification key notifykey and time-slot specific keys timekey. To
protect these, the client could encrypt them against the Backend Server’s public key before storing
them. This approach comes at the cost of clients not being able to redact these records anymore
before uploading them.

We point out that that in some deployment scenarios, this protection is limited. A determined
attacker can use the Backend Server as a decryption oracle to recover, say, preid, and thus determine
a user’s location visits after all.

Therefore, we recommend that, if possible, clients store only the encrypted basic CrowdNotifier
records for sensitive visits. This enables them to receive notifications at no privacy risk.

6.9.2 Improving privacy of users towards the Backend server

For the privacy attacks on users carried out by the server to be effective, the server needs to be able
to map uploads to real identities. A strong defense for users is to use anonymous communications
systems when uploading information in order to hide their IP address from the Backend Server.

By hiding their network identity, users limit the impact of the attack to cases for which (i) the
Backend Server has knowledge of the QR codes of more that one of the locations visited by the user
(which will rarely include private events whose keys are used only once) and (ii) those locations
are enough information to re-identify the user.

To further reduce the re-identification capability, system deployments are encouraged to include
redaction to let users remove identifying locations from their upload list.

For co-location attacks, which would be possible even if the adversary does not know the location
in which users have been present, the use of anonymous communication renders the attack useless:
the Backend Server learns that two or more users were at the same location, but not whom.

One could be tempted to use dummy check-ins to try to prevent the Backend Server from learning
the locations visited by users. However, the use of dummies does not help against an adversary that
has access to pairs of real locations and their QR codes. This adversary can use her knowledge to
filter out dummy check-ins (the adversary removes check-ins that do not correspond to any known
QR). If the adversary cannot associate a check-in to a QR code, then there is no privacy risk to
start with as the adversary cannot identify the corresponding location.

24 Chapter 6. Server-Based CrowdNotifier

CHAPTER

SEVEN

IDENTITY-BASED ENCRYPTION

CrowdNotifier uses a specific identity-based encryption scheme, to ensure all security and privacy
properties. In particular, CrowdNotifier uses a slight modification of the FullIdent Boneh-Franklin
scheme [BF01] given by the following algorithms. (The only modification is that the randomness
𝑟 now also depends on the identity id, which is passed to IBE.Dec for verification purposes.)

7.1 Mathematical description

• pp ← IBE.CommonSetup(1ℓ). On input of security parameter ℓ, generate a type III set of
bilinear groups 𝐺1, 𝐺2, 𝐺𝑇 generated by respectively 𝑔1, 𝑔2, 𝑔𝑇 all of prime order 𝑝 and
let 𝑒 : 𝐺1 × 𝐺2 → 𝐺𝑇 be the corresponding pairing. Generate the following hash-
functions (modeled as random oracles): 𝐻1 : {0, 1}* → 𝐺*

1 a hash function mapping
points to the group 𝐺*

1, 𝐻𝑇 : 𝐺𝑇 → {0, 1}2ℓ mapping group elements from the tar-
get group, 𝐻3 : {0, 1}2ℓ × {0, 1}* × {0, 1}* → {0, 1}2ℓ, and 𝐻4 : {0, 1}2ℓ → 𝒦
mapping into the key-space of the authenticated encryption scheme. Setup outputs pp =
((𝐺1, 𝐺2, 𝐺𝑇 , 𝑔1, 𝑔2, 𝑔𝑇 , 𝑝, 𝑒), 𝐻1, 𝐻𝑇 , 𝐻3, 𝐻4).

• (mpk,msk)← IBE.KeyGen(pp). Pick random msk← Z𝑝 and set mpk = 𝑔msk
2 ∈ 𝐺2. Return

(mpk,msk).

• skid ← IBE.KeyDer(mpk,msk, id). On input of a master public key mpk, a master private key
msk, and an identity id ∈ {0, 1}*; outputs private key skid = 𝐻1(id)msk ∈ 𝐺1.

• ctxt ← IBE.Enc(mpk, id,𝑚). On input of a master public key mpk, an identity id ∈ {0, 1}*,
and a message 𝑚, proceed as follows. Check that mpk ∈ 𝐺*

2. Pick a random key 𝑥 ←
{0, 1}2ℓ and compute

𝑐1 = 𝑔𝑟2,

𝑐2 = 𝑥⊕𝐻𝑇 (𝑒(𝐻1(id),mpk)𝑟),
𝑐3 = AE.Enc(𝐻4(𝑥),𝑚)

where 𝑟 = 𝐻3(𝑥,𝑚, id). Return ctxt = (𝑐1, 𝑐2, 𝑐3).

• 𝑚 ← IBE.Dec(id, skid, ctxt). On input of an identity id, a private key skid, and a ciphertext
ctxt, proceed as follows. Parse ctxt as (𝑐1, 𝑐2, 𝑐3) and return ⊥ if parsing fails. Check that
skid ∈ 𝐺*

1, and compute 𝑥′ = 𝑐2 ⊕𝐻𝑇 (𝑒(skid, 𝑐1)) and 𝑚′ = AE.Dec(𝐻4(𝑥
′), 𝑐3). Return

⊥ if 𝑚′ = ⊥. Finally, compute 𝑟′ = 𝐻3(𝑥
′,𝑚′, id) and check that 𝑐1 = 𝑔𝑟

′

2 . If this check
fails, return ⊥, otherwise, return 𝑚′.

25

CrowdNotifier Technical Specification, Release v0.1.5

7.2 Implementation of IBE in CrowdNotifier

The following is a list of pseudo-codes describing how the above methods can be implemented:

• IBE.CommonSetup using mcl.init:

mcl.init(mcl.BLS12_381)

• IBE.KeyGen:

msk = new mcl.Fr();
msk.setByCSPRNG();

mpk = mcl.mul(baseG2, msk);

• IBE.KeyDer(msk, id):

skid = mcl.mul(h1(id), msk)

• IBE.Enc(mpk, id, m):

x = randombytes_buf(NONCE_LENGTH);

r = h3(x, id, m);
c1 = mcl.mul(baseG2, r);

c2_pair = ht(mcl.pow(mcl.pairing(h1(id), mpk), r));
c2 = xor(x, c2_pair);

nonce = randombytes_buf(crypto_secretbox_NONCEBYTES);

c3 = crypto_secretbox_easy(m, nonce, h4(x));

• IBE.Dec(id, skid, ctxt = (c1, c2, c3)):

x_p = xor(c2, ht(mcl.pairing(skid, c1)));
msg_p = crypto_secretbox_open_easy(c3, nonce, h4(x_p));
// or return _I_ on error

r_p = h3(x_p, id, msg_p);
c1_p = mcl.mul(baseG2, r_p);

if (!c1.isEqual(c1_p)) {
return _I_;

}

// Check that skid is in G1*
if (!skid.isValidOrder() || skid.isZero()) {

return _I_;
}

return msg_p;

With the following helper methods:

• h1(id):

h1 = mcl.hashAndMapToG1(id)

• h3(x_p, id, msg_p):

h3 = new mcl.Fr();
// The '+' concatenates the binary arrays
h3.setHashOf(x_p + id + msg_p);

• h4(id):

26 Chapter 7. Identity-based Encryption

https://github.com/herumi/mcl/blob/master/api.md#initialization

CrowdNotifier Technical Specification, Release v0.1.5

h4 = crypto_hash_sha256(id)

• ht(gt):

ht = crypto_hash_sha256(gt.serialize())

• xor(a, b):

c[i] = a[i] ^ b[i]

• baseG2:

baseG2 = new mcl.G2();
baseG2.setStr(

'135270106958746661818713911601106014489002995279277524021990864' +
'4239793785735715026873347600343865175952761926303160 ' +
'305914434424421370997125981475378163698647032547664755865937320' +
'6291635324768958432433509563104347017837885763365758 ' +
'198515060228729193556805452117717163830086897821565573085937866' +
'5066344726373823718423869104263333984641494340347905 ' +
'927553665492332455747201965776037880757740193453592970025027978' +
'793976877002675564980949289727957565575433344219582');

7.2.1 Serialization of Keys

The master public key mpk consists of a single element in 𝐺2. We serialize it using the mcl
serialization function.

7.2. Implementation of IBE in CrowdNotifier 27

BIBLIOGRAPHY

[BF01] Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil Pair-
ing. In CRYPTO. 2001.

[LGV+] Wouter Lueks, Seda Gürses, Michael Veale, Edouard Bugnion, Marcel Salathé,
Kenneth G. Paterson, and Carmela Troncoso. CrowdNotifier: Decentralized
privacy-preserving presence tracing. White Paper, Version February 5, 2021. URL:
https://github.com/CrowdNotifier/documents/blob/main/CrowdNotifier%20-%
20White%20Paper.pdf.

[LGV+21] Wouter Lueks, Seda Gürses, Michael Veale, Edouard Bugnion, Marcel Salathé,
Kenneth G. Paterson, and Carmela Troncoso. CrowdNotifier: Decentralized
Privacy-Preserving Presence Tracing. 2021. Under submission.

[RBC21] Vincent Roca, Antoine Boutet, and Claude Castelluccia. The Cluster Exposure
Verification (Cléa) Protocol: Specifications of the Lightweight Version. 2021.
https://hal.inria.fr/hal-03146022.

[DP3TTeam] DP-3T Team. Best practices: operational security for proximity tracing. URL: https:
//github.com/DP-3T/documents/blob/master/DP3T%20-%20Best%20Practices%
20for%20Operation%20Security%20in%20Proximity%20Tracing.pdf.

28

https://github.com/CrowdNotifier/documents/blob/main/CrowdNotifier%20-%20White%20Paper.pdf
https://github.com/CrowdNotifier/documents/blob/main/CrowdNotifier%20-%20White%20Paper.pdf
https://github.com/DP-3T/documents/blob/master/DP3T%20-%20Best%20Practices%20for%20Operation%20Security%20in%20Proximity%20Tracing.pdf
https://github.com/DP-3T/documents/blob/master/DP3T%20-%20Best%20Practices%20for%20Operation%20Security%20in%20Proximity%20Tracing.pdf
https://github.com/DP-3T/documents/blob/master/DP3T%20-%20Best%20Practices%20for%20Operation%20Security%20in%20Proximity%20Tracing.pdf

INDEX

B
Backend Server, 3

H
Health Authority, 3
Health Authority Backend, 3

L
Location, 3
Location Owner, 3

O
Organization, 3

V
Visitor, 3

29

	Introduction
	Authors and Contributors
	License

	Terminology
	Cryptographic Building Blocks
	Basic Primitives
	Symmetric-key Encryption
	Public-key Encryption
	Identity-Based Encryption

	Basic CrowdNotifier
	Global Setup
	Setting up a Health Authority
	Setting-up a Location
	Entry QR Code Format

	Visiting a Location
	Computing Identities and Keys

	Initiating Presence Notification
	Data Formats

	Presence Tracing and Notification

	Managed CrowdNotifier
	The Idea
	Organization Setup
	Setting-up a New Location
	Initiating Presence Notification

	Server-Based CrowdNotifier
	Implications of Automatic Triggering
	Overview of Server-Based CrowdNotifier
	Setting up the Backend Server
	Setting-up a Location
	Visiting a Location
	Initiating Presence Notification
	Presence Tracing and Notification
	Security and Privacy Analysis
	Privacy of Users
	Adversarial Backend Server
	Adversarial Users

	Privacy of Locations
	Security

	Privacy enhancements
	Improving privacy of records in the app
	Improving privacy of users towards the Backend server

	Identity-based Encryption
	Mathematical description
	Implementation of IBE in CrowdNotifier
	Serialization of Keys

	Bibliography
	Index

